sorting

February 9, 2026

[1]: def insertion_sort(list_to_sort): # 0(n"2)
L = list(list_to_sort)
new_list = []

while len(L) > O:
find the index of the smallest thing

min_index = min(range(len(L)), key=lambda i : L[i])

remove it from L and add it to new_list
new_list.append(L.pop(min_index))

return new_list
[2]: import random
from time import time

import math

[3]:|L = [random.randint(1,1_000_000) for n in range(10_000)]

[4]: tt = time()
R1 = insertion_sort(L)
print (time()-tt)

2.4214320182800293

[5]:tt = time()
R2 sorted (L)
print (time()-tt)

0.0008769035339355469

[6]: def merge_sort(L):
assume L ts a list of numbers
output will be a sorted list of those numbers

base case: a list of length 1 %s already sorted
if len(L) <= 1:
return L

split the list (roughly) in half
mid_point = math.ceil(len(L)/2)
left_half = L[:mid_point]
right_half = L[mid_point:]

recursively apply the function to the two halfs (divide)
LS = merge_sort(left_half)
RS = merge_sort(right_half)

time to conquer
full_list = []

while the two halves still have something left
while len(LS) + len(RS) > O:
either LS[0] or RS[0] is the smallest of all elements
i2n LS and RS. Find <t, remove it from its list, and
add 1t to full_list
"if [list]" means "if the list is nmon-empty".
same as "if len([list]) > 0"
if LS:
if RS:
if LS[0] <= RS[0]:
full_list.append(LS.pop(0))
else:
full_list.append(RS.pop(0))
else:
full list.append(LS.pop(0))
else:
full_list.append(RS.pop(0))
return full list

[7]: tt = time()
R3 = merge_sort(L)
print(time () -tt)

0.02702784538269043

[1: R3 == R2

[8]: times = []
for p in range(1,20):
L = [random.randint(1,1000000) for n in range(2**p)]

tt = time()
R = insertion_sort(L)
times.append(time () -tt)

print (f"{2*x*p} {time()-ttl}")
if len(times) > 1:
print(£"\t{times[-1]/times[-2]}")

2 5.9604644775390625e-06
4 3.814697265625e-06
0.5714285714285714
8 5.245208740234375e-06
1.5
16 1.0967254638671875e-05
2.55555565555555554
32 3.0994415283203125e-05
2.8260869565217392
64 0.00010180473327636719
3.2846153846153845
128 0.00036597251892089844
3.5948477751756442
256 0.0019021034240722656
5.188925081433225
512 0.0071680545806884766
3.7730069052102952
1024 0.024302959442138672
3.3915213629708507
2048 0.10291194915771484
4.234924746374679
4096 0.41745686531066895
4.05651341883827
8192 1.6518058776855469
3.9568638447993942
16384 6.449176073074341
3.9043272120315997
32768 26.217708110809326
4.065282212193308

KeyboardInterrupt Traceback (most recent call last)
In[8], line 6
3 L = [random.randint(1,1000000) for n in range (2**p)]
5 tt = time()
-—--> 6 R = insertion_sort(L)
7 times.append(time()-tt)
9 print (f"{2**p} {time()-tt}")

In[1], line 7, in (list_to_sort)
3 new_list = []

5 while len(L) > O:

6 # find the index of the smallest thing

[1:

[]:

[]1:

——>7 min_index = min(range(len(L)), key=lambda i :
9 # remove it from L and add it to new_list
10 new_list.append(L.pop(min_index))
In[1], line 7, in (1)
3 new_list = []
5 while len(L) > O:
6 # find the index of the smallest thing
-——=>7 min_index = min(range(len(L)), key=lambda i :
9 # remove it from L and add it to new_list
10 new_list.append(L.pop(min_index))
KeyboardInterrupt:

times = []
for p in range(0,7):
L = [random.randint(1,1000000) for n in range(10**p)]

tt = time()
R2 = merge_sort(L)
times.append(time()-tt)

print (£"{10**p} {time()-tt}")
if len(times) > 1:
print (f"\t{times[-1]/times[-2]}")

times = []
for p in range(1,8):
L = [random.randint(1,1000000) for n in range(10**p)]

tt = time()
R3 = sorted(L)
times.append(time ()-tt)

print (£"{10**p} {time()-tt}")
if len(times) > 1:
print (f"\t{times[-1]/times[-2]}")

L[il)

L[iD)

